Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Catalytic methane sensor using a Ni-CaZr0.9In0.1O3-α Cermet electrode

Identifieur interne : 002133 ( Chine/Analysis ); précédent : 002132; suivant : 002134

Catalytic methane sensor using a Ni-CaZr0.9In0.1O3-α Cermet electrode

Auteurs : RBID : Pascal:00-0537779

Descripteurs français

English descriptors

Abstract

A catalytic asymmetrical Nernst-type methane sensor with a porous Ni-CaZr0.9In0.1O3-α Cermet electrode has been developed. At 600 and 700°C a Nemst-like behavior of the sensor is observed as a function of the methane partial pressure with a slope of 56 and 26 mV/decade, respectively. At 500°C a deviation from this behavior is found. The temperature dependence of the sensor response can be explained by the difference in catalytic activity of nickel and platinum. The sensor response depends on the CO2 concentration, but it is shown that the measured electromotive force can be corrected for the CO2 concentration in the gas mixture. The presence of water in the gas mixture leads to a decrease of the sensitivity, which can be explained by the different catalytic response of nickel and platinum to the presence of water. The sensor shows good reproducibility and long-term stability. The effect of the gas flow rate on the sensor performance is found to be minimal.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0537779

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Catalytic methane sensor using a Ni-CaZr
<sub>0.9</sub>
In
<sub>0.1</sub>
O
<sub>3-α</sub>
Cermet electrode</title>
<author>
<name sortKey="Le, J" uniqKey="Le J">J. Le</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Inorganic Chemistry, Delft University of Technology</s1>
<s2>2628 BL Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2628 BL Delft</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Inorganic Materials, East China University of Science and Technology</s1>
<s2>Shanghai 200237</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200237</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Rij, L N" uniqKey="Van Rij L">L. N. Van Rij</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Inorganic Chemistry, Delft University of Technology</s1>
<s2>2628 BL Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2628 BL Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schoonman, J" uniqKey="Schoonman J">J. Schoonman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory for Inorganic Chemistry, Delft University of Technology</s1>
<s2>2628 BL Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2628 BL Delft</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0537779</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 00-0537779 INIST</idno>
<idno type="RBID">Pascal:00-0537779</idno>
<idno type="wicri:Area/Main/Corpus">012083</idno>
<idno type="wicri:Area/Main/Repository">013636</idno>
<idno type="wicri:Area/Chine/Extraction">002133</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0013-4651</idno>
<title level="j" type="abbreviated">J. Electrochem. Soc.</title>
<title level="j" type="main">Journal of the Electrochemical Society</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium Oxides</term>
<term>Cermet</term>
<term>Chemical sensor</term>
<term>Electrocatalysis</term>
<term>Electrode life</term>
<term>Experimental study</term>
<term>Gas detector</term>
<term>Gas electrode</term>
<term>Hydrocarbon</term>
<term>Indium Oxides</term>
<term>Ion selective electrode</term>
<term>Long term</term>
<term>Medium effect</term>
<term>Methane</term>
<term>Morphology</term>
<term>Nickel</term>
<term>Scanning electron microscopy</term>
<term>Stability</term>
<term>Surface structure</term>
<term>Temperature effect</term>
<term>Water content</term>
<term>X ray diffraction</term>
<term>Zirconium Oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Electrode spécifique</term>
<term>Electrode gaz</term>
<term>Cermet</term>
<term>Nickel</term>
<term>Calcium Oxyde</term>
<term>Zirconium Oxyde</term>
<term>Indium Oxyde</term>
<term>Détecteur de gaz</term>
<term>Capteur chimique</term>
<term>Méthane</term>
<term>Hydrocarbure</term>
<term>Effet température</term>
<term>Effet milieu</term>
<term>Teneur eau</term>
<term>Electrocatalyse</term>
<term>Microscopie électronique balayage</term>
<term>Morphologie</term>
<term>Structure surface</term>
<term>Diffraction RX</term>
<term>Stabilité</term>
<term>Long terme</term>
<term>Durée vie électrode</term>
<term>CaZr0,9In0,1O3-α</term>
<term>Ca In O Zr</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Nickel</term>
<term>Hydrocarbure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A catalytic asymmetrical Nernst-type methane sensor with a porous Ni-CaZr
<sub>0.9</sub>
In
<sub>0.1</sub>
O
<sub>3-α</sub>
Cermet electrode has been developed. At 600 and 700°C a Nemst-like behavior of the sensor is observed as a function of the methane partial pressure with a slope of 56 and 26 mV/decade, respectively. At 500°C a deviation from this behavior is found. The temperature dependence of the sensor response can be explained by the difference in catalytic activity of nickel and platinum. The sensor response depends on the CO
<sub>2</sub>
concentration, but it is shown that the measured electromotive force can be corrected for the CO
<sub>2</sub>
concentration in the gas mixture. The presence of water in the gas mixture leads to a decrease of the sensitivity, which can be explained by the different catalytic response of nickel and platinum to the presence of water. The sensor shows good reproducibility and long-term stability. The effect of the gas flow rate on the sensor performance is found to be minimal.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4651</s0>
</fA01>
<fA02 i1="01">
<s0>JESOAN</s0>
</fA02>
<fA03 i2="1">
<s0>J. Electrochem. Soc.</s0>
</fA03>
<fA05>
<s2>147</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Catalytic methane sensor using a Ni-CaZr
<sub>0.9</sub>
In
<sub>0.1</sub>
O
<sub>3-α</sub>
Cermet electrode</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LE (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VAN RIJ (L. N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHOONMAN (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory for Inorganic Chemistry, Delft University of Technology</s1>
<s2>2628 BL Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Inorganic Materials, East China University of Science and Technology</s1>
<s2>Shanghai 200237</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>4345-4350</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4925</s2>
<s5>354000092727670620</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2000 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>00-0537779</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of the Electrochemical Society</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A catalytic asymmetrical Nernst-type methane sensor with a porous Ni-CaZr
<sub>0.9</sub>
In
<sub>0.1</sub>
O
<sub>3-α</sub>
Cermet electrode has been developed. At 600 and 700°C a Nemst-like behavior of the sensor is observed as a function of the methane partial pressure with a slope of 56 and 26 mV/decade, respectively. At 500°C a deviation from this behavior is found. The temperature dependence of the sensor response can be explained by the difference in catalytic activity of nickel and platinum. The sensor response depends on the CO
<sub>2</sub>
concentration, but it is shown that the measured electromotive force can be corrected for the CO
<sub>2</sub>
concentration in the gas mixture. The presence of water in the gas mixture leads to a decrease of the sensitivity, which can be explained by the different catalytic response of nickel and platinum to the presence of water. The sensor shows good reproducibility and long-term stability. The effect of the gas flow rate on the sensor performance is found to be minimal.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01H02A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C04A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrode spécifique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ion selective electrode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electrodo específico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Electrode gaz</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Gas electrode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Electrodo gas</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cermet</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Cermet</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cermetal</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nickel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nickel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Niquel</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Calcium Oxyde</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Calcium Oxides</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Calcio Óxido</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Zirconium Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Zirconium Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Zirconio Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Indium Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Indio Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Détecteur de gaz</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gas detector</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Detector de gas</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Capteur chimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Chemical sensor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Captador químico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthane</s0>
<s1>ANA</s1>
<s2>NK</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Methane</s0>
<s1>ANA</s1>
<s2>NK</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Metano</s0>
<s1>ANA</s1>
<s2>NK</s2>
<s2>FX</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Hydrocarbure</s0>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Hydrocarbon</s0>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Hidrocarburo</s0>
<s2>FX</s2>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Effet milieu</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Medium effect</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Efecto medio</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Teneur eau</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Water content</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Dosis agua</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Electrocatalyse</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electrocatalysis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Electrocatálisis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Stabilité</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Stability</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estabilidad</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Long terme</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Long term</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Largo plazo</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Durée vie électrode</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electrode life</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Duración vida electrodo</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>CaZr0,9In0,1O3-α</s0>
<s4>INC</s4>
<s5>62</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Ca In O Zr</s0>
<s4>INC</s4>
<s5>63</s5>
</fC03>
<fN21>
<s1>353</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 002133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:00-0537779
   |texte=   Catalytic methane sensor using a Ni-CaZr0.9In0.1O3-α Cermet electrode
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024